Mark Scheme 4725 January 2006

Mark Total

1.	(i) $2+16 i-i-8 i^{2}$ $10+15 i$ (ii) $\frac{1}{5}(10+15 i) \text { or } 2+3 i$	M1 A1 M1 A1 A1ft	2 3 5	Attempt to multiply correctly Obtain correct answer Multiply numerator \& denominator by conjugate Obtain denominator 5 Their part (i) or $10+15 i$ derived again $/ 5$
2.	$\begin{aligned} & 1^{2}=\frac{1}{6} \times 1 \times 2 \times 3 \\ & \frac{1}{6} n(n+1)(2 n+1)+(n+1)^{2} \\ & \frac{1}{6}(n+1)(n+2)\{2(n+1)+1\} \end{aligned}$	B1 M1 DM1 A1 A1		Show result true for $n=1$ or 2 Add next term to given sum formula, any letter OK Attempt to factorise or expand and simplify Correct expression obtained Specific statement of induction conclusion, with no errors seen
3.	(i) $\begin{aligned} & 2\left[\begin{array}{ll} 2 & 1 \\ 13 \end{array}\right]-1\left[\begin{array}{ll} 1 & 1 \\ 1 & 3 \end{array}\right]+3\left[\begin{array}{ll} 1 & 2 \\ 1 & 1 \end{array}\right] \\ & 2 \times 5-1 \times 2+3 \times-1 \end{aligned}$ (ii)	M1 A1 A1 B1ft	3 1 4	Show correct expansion process, allow sign slips Obtain correct (unsimplified) expression Obtain correct answer State that \mathbf{M} is non-singular as $\operatorname{det} \mathbf{M}$ non-zero, ft their determinant
4.	$\begin{aligned} & u^{2}+4 u+4 \\ & u^{3}+6 u^{2}+12 u+8 \end{aligned}$ $\begin{aligned} u & =\sqrt[3]{5} \\ x & =2+\sqrt[3]{5} \end{aligned}$	B1 M1 A1 A1ft A1ft	5 5	$u+2$ squared and cubed correctly Substitute these and attempt to simplify Obtain $u^{3}-5=0$ or equivalent Correct solution to their equation Obtain $2+$ their answer [Decimals score 0/2 of final A marks]

6. (i) $\frac{1}{2}\left(\begin{array}{cc}8 & -2 \\ -3 & 1\end{array}\right)$
(ii) Either

$$
\frac{1}{2}\left(\begin{array}{cc}
14 & 2 \\
-5 & 0
\end{array}\right)
$$

Or

$$
\begin{aligned}
& \frac{1}{5}\left(\begin{array}{cc}
3 & -1 \\
-1 & 2
\end{array}\right) \\
& \mathbf{B}=\mathbf{A}^{-1} \mathbf{C}
\end{aligned}
$$

$$
B=\frac{1}{5}\left(\begin{array}{ll}
0 & -2 \\
5 & 14
\end{array}\right)
$$

$$
\frac{1}{2}\left(\begin{array}{cc}
14 & 2 \\
-5 & 0
\end{array}\right)
$$

Or

$$
\mathbf{A B}=\binom{2 a+c 2 b+d}{a+3 c b+3 d}
$$

$$
a=0, c=1, b=-0.4, d=2.8
$$

$$
\frac{1}{2}\left(\begin{array}{cc}
14 & 2 \\
-5 & 0
\end{array}\right)
$$

Transpose leading diagonal and negate other diagonal
Divide by determinant
State or imply $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$
Use this result and obtain $\mathbf{B}^{-1}=\mathbf{C}^{-1} \mathbf{A}$, or equivalent matrix algebra

Matrix multn., two elements correct, for any pair
All elements correct $f t$ their (i)

Find \mathbf{A}^{-1}

Premultiply by \mathbf{A}^{-1} stated or implied
Matrix multn. Two elements correct All elements correct

Correct B^{-1}

Find $\mathbf{A B}$
Solve one pair of simultaneous equations
Each pair of answers
Correct \mathbf{B}^{-1}

\begin{tabular}{|c|c|c|c|c|}
\hline 7. \& \begin{tabular}{l}
(a) (i) \(\sqrt{13}\) \\
(ii)
\[
-0.59
\] \\
(b)
\[
1-2 i
\] \\
(c)
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
A1 \\
M1 \\
A1A1 \\
A1 \\
B1 \\
B1
\end{tabular} \& 1
3
3
4
4
2
10 \& \begin{tabular}{l}
Obtain correct answer, decimals OK \\
Using \(\tan ^{-1 \mathrm{~b}} / \mathrm{a}\), or equivalent trig allow + or Obtain 0.59 \\
Obtain correct answer \\
Express LHS in Cartesian form \& equate real and imaginary parts \\
Obtain \(x=1\) and \(y=-2\) \\
Correct answer written as a complex number \\
Sketch of vertical straight line \\
Through (-0.5, 0)
\end{tabular} \\
\hline 8. \& \[
\begin{aligned}
\& \text { (i) } \\
\&\binom{0}{0}\binom{2}{0}\binom{2}{-2}\binom{0}{-2} \\
\& \text { (ii) Either }\left(\begin{array}{ll}
1 \& 0 \\
0 \& -1
\end{array}\right) \\
\&\left(\begin{array}{ll}
2 \& 0 \\
0 \& 2
\end{array}\right) \\
\& \text { Or }\left(\begin{array}{ll}
-1 \& 0 \\
0 \& 1
\end{array}\right) \\
\& \text { Or }\left(\begin{array}{ll}
-2 \& 0 \\
0 \& 0 \\
0 \& 1
\end{array}\right) \\
\&\left(\begin{array}{ll}
1 \& 0 \\
0 \& -2
\end{array}\right)
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
B1,B1 \\
B1
\end{tabular} \& 3
6
6

9 \& | For correct vertex (2, -2) |
| :--- |
| For all vertices correct |
| For correct diagram |
| Reflection, in x-axis Correct matrix |
| Enlargement, centre O s.f. 2 Correct matrix |
| Reflection, in the y-axis Correct matrix |
| Enlargement, centre O s.f. -2 |
| Correct matrix |
| Stretch, in x-direction s.f. 2 |
| Correct matrix |
| Stretch, in y-direction s.f. -2 Correct matrix |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 9. \& \begin{tabular}{l}
\[
\text { (i) } \begin{gathered}
\frac{r+2-r}{r(r+2)} \\
\frac{2}{r(r+2)}
\end{gathered}
\] \\
(ii)
\[
\frac{3}{2}-\frac{1}{n+1}-\frac{1}{n+2}
\] \\
(iii) (a)
\[
\frac{3}{2}
\] \\
(b)
\[
\frac{1}{n+1}+\frac{1}{n+2}
\]
\end{tabular} \& \begin{tabular}{l}
A1 \\
M1 \\
M1 \\
A1 \\
A1 \\
A1 \\
B1ft \\
M1 \\
A1 ft
\end{tabular} \& 5
1

2

10 \& | Show correct process for subtracting fractio |
| :--- |
| Obtain given answer correctly |
| Express terms as differences using (i) |
| Express $1^{\text {st }} 3$ (or last 3) terms so that cancelling occurs |
| Obtain $1+\frac{1}{2}$ |
| Obtain $-\frac{1}{n+2},-\frac{1}{n+1}$ |
| Obtain correct answer in any form |
| Obtain value from their sum to n terms |
| Using (iii) (a) - (ii) or method of differences again [$n \rightarrow \infty$ is a method error] |
| Obtain answer in any form |

\hline 10. \& | (i) $\alpha+\beta+\gamma=9$ |
| :--- |
| (ii) $p=\frac{9-\alpha}{2}$ |
| (iii) $\alpha \beta \gamma=29$ |
| (iv) $\alpha\left(p^{2}+q^{2}\right)=29$ $q=\sqrt{\frac{29}{\alpha}-\frac{(9-\alpha)^{2}}{4}}$ |
| (iv) Alternative method $2 p \alpha+p^{2}+q^{2}=27$ $q=\sqrt{27-\frac{(9-\alpha)^{2}}{4}-\alpha(9-\alpha)}$ | \& | B1 |
| :--- |
| B1 |
| M1 |
| A1 |
| A1 |
| B1 |
| M1 |
| A1ft |
| M1 |
| M1 |
| A1 |
| M1 |
| A1 |
| M1 |
| M1 |
| A1 | \& 1

4
1

5

11 \& | State or use other root is p-iq |
| :--- |
| Substitute into (i) |
| Obtain $2 p+\alpha=9$ |
| Obtain correct answer a.e.f. |
| Substitute into (iii) |
| Obtain unsimplified expression with no i's |
| Rearrange to obtain q or q^{2} |
| Substitute their expression for p a.e.f. |
| Obtain correct answer a.e.f. |
| Substitute into $\alpha \beta+\beta \gamma+\gamma \alpha=27$ |
| Obtain unsimplified expression with no i's |
| Rearrange to obtain q or q^{2} |
| Substitute their expression for p a.e.f. |
| Obtain correct answer a.e.f. |

\hline
\end{tabular}

